Tungsten Copper Information
What is tungsten copper alloy
Tungsten copper alloy is a pseudo-alloy of copper and tungsten. As copper and tungsten are not mutually soluble, the material is composed of distinct particles of one metal dispersed in a matrix of the other one. The microstructure is therefore rather a metal matrix composite instead of a true alloy.
The material combines the properties of both metals, resulting in a material that is heat-resistant, ablation-resistant, highly thermally and electrically conductive, and easy to machine.
Parts are made from the CuW alloy by pressing the tungsten particles into a desired shape, sintering the compacted part, then infiltrating with molten copper. Sheets, rods and bars of the alloy are available as well.
Commonly used tungsten copper alloy contains 10–50 wt.% of copper, the remaining portion being mostly tungsten. The typical properties of the alloy depend on its composition. The alloy with less wt.% of copper has higher density, higher hardness and higher resistivity. The typical density of CuW90 alloy, with 10% of copper, is 16.75 g/cm3 and 11.85 g/cm3 for CuW50 alloy. CuW90 has higher hardness and resistivity of 260 HB kgf/mm2 and 6.5 ?Ω.cm than CuW50.
Typical properties of commonly used tungsten copper composition
Composition | Density | Hardness | Resistivity | IACS | Bending strength |
wt.?% | g/cm3≥ | HB Kgf/mm2≥ | ?Ω.cm≤ | ?%≥ | Mpa≥ |
W50/Cu50 | 11.85 | 115 | 3.2 | 54 | – |
W55/Cu45 | 12.30 | 125 | 3.5 | 49 | – |
W60/Cu40 | 12.75 | 140 | 3.7 | 47 | – |
W65/Cu35 | 13.30 | 155 | 3.9 | 44 | – |
W70/Cu30 | 13.80 | 175 | 4.1 | 42 | 790 |
W75/Cu25 | 14.50 | 195 | 4.5 | 38 | 885 |
W80/Cu20 | 15.15 | 220 | 5.0 | 34 | 980 |
W85/Cu15 | 15.90 | 240 | 5.7 | 30 | 1080 |
W90/Cu10 | 16.75 | 260 | 6.5 | 27 | 1160 |